Neural decoding of collective wisdom with multi-brain computing

Eckstein, MP, Das, K, Pham, BT, Peterson, MF, Abbey, CK, Sy, JL, & Giesbrecht, B. (2012). Neural decoding of collective wisdom with multi-brain computing. NeuroImage Volume 59, Issue 1, 2 January 2012, Pages 94–108.

Abstract: Group decisions and even aggregation of multiple opinions lead to greater decision accuracy, a phenomenon known as collective wisdom. Little is known about the neural basis of collective wisdom and whether its benefits arise in late decision stages or in early sensory coding. Here, we use electroencephalography and multi-brain computing with twenty humans making perceptual decisions to show that combining neural activity across brains increases decision accuracy paralleling the improvements shown by aggregating the observers' opinions. Although the largest gains result from an optimal linear combination of neural decision variables across brains, a simpler neural majority decision rule, ubiquitous in human behavior, results in substantial benefits. In contrast, an extreme neural response rule, akin to a group following the most extreme opinion, results in the least improvement with group size. Analyses controlling for number of electrodes and time-points while increasing number of brains demonstrate unique benefits arising from integrating neural activity across different brains. The benefits of multi-brain integration are present in neural activity as early as 200 ms after stimulus presentation in lateral occipital sites and no additional benefits arise in decision related neural activity. Sensory-related neural activity can predict collective choices reached by aggregating individual opinions, voting results, and decision confidence as accurately as neural activity related to decision components. Estimation of the potential for the collective to execute fast decisions by combining information across numerous brains, a strategy prevalent in many animals, shows large time-savings. Together, the findings suggest that for perceptual decisions the neural activity supporting collective wisdom and decisions arises in early sensory stages and that many properties of collective cognition are explainable by the neural coding of information across multiple brains. Finally, our methods highlight the potential of multi-brain computing as a technique to rapidly and in parallel gather increased information about the environment as well as to access collective perceptual/cognitive choices and mental states.

Read this article


(Something interesting I found)Posted:Jan 01 2012, 12:00 AM by brendah
Join the Network    
Users are able to post wisdom-related news & publications, maintain a profile, and participate in discussion forums.

Sort By